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ABSTRACT The neurological disorder mild cognitive impairment (MCI) demonstrates minor impacts on
the patient’s daily activities and may be ignored as the status of normal aging. But some of the MCI patients
may further develop into severe statuses like Alzheimer’s disease (AD). The brain functional connectivity
network (BFCN) was usually constructed from the resting-state functional magnetic resonance imaging
(rs-fMRI) data. This technology has been widely used to detect the neurodegenerative dementia and to
reveal the intrinsic mechanism of neural activities. The BFCN edge was usually determined by the pairwise
correlation between the brain regions. This study proposed a weighted voting model of multi-source
connectivity networks (MuscNet) by integrating multiple BFCNs of different correlation coefficients. Our
model was further improved by removing redundant features. The experimental data demonstrated that
different BFCNs contributed complementary information to each other and MuscNet outperformed the
existing models on detecting MCI patients. The previous study suggested the existence of multiple solutions
with similarly good performance for a machine learning problem. The proposed model MuscNet utilized a
weighted voting strategy to slightly outperform the existing studies, suggesting an effective way to fuse
multiple base models. The reason may need further theoretical investigations about why different base
models contribute to each other for the MCI prediction.

INDEX TERMS Mild cognitive impairment, Alzheimer’s disease, resting-state functional MRI, brain
functional connectivity network, multi-source connectivity network, weighted voting model, MuscNet.

I. INTRODUCTION
Alzheimer’s disease (AD) is one of the most dangerous
and frequently-occurred brain diseases, and this irreversible
neuro-degenerative dementia remains to have no effec-
tive treatments [1]. AD may develop from mild cognitive
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impairment (MCI), which has become the investigation focus
of the AD researchers [2]. According to [3], the functionally
alive brain may be modeled as a graph, with the functional
brain regions (also called region of interest, or ROI) as
nodes and significant correlations between nodes as edges,
which are calculated using the time series data of blood-
oxygenation-level-dependent (BOLD) signals of each ROI.
Such a network was defined as the basal forebrain cholinergic
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neurons (BFCN) and was expected to reveal intrinsic mech-
anisms about BFCNs, etc[4]. The static Pearson correlation
coefficient (PCC)-based BFCN has demonstrated promising
predicting performances on the diagnosis of MCI, AD and
a few other diseases [5]–[7]. The partial time series data
of blood-oxygenation-level-dependent (BOLD) signals were
used to represent the temporary graph nodes and to construct
the dynamic BFCN [8], [9].

The above-mentioned network was regarded as the
low-order BFCN and in [5], the high-order version BFCN
(HON) was constructed by calculating weighted-graph local
clustering coefficients as the features of brain regions.
In [7], dynamic versions of low-order (LoM) and high-order
BFCNs (HiO) were constructed simultaneously using Matrix
Variate Normal Distribution (MVND), and a fusion model
(FuMO) integrating both low-order and high-order BFCN
was further proposed. Although the high order BFCN demon-
strated better diagnosis performance on neurodegenerative
dementia [10], researches in [11] indicated that the inte-
gration of both low-order and high-order BFCNs may
complement each other and facilitate a better diagnosis
result.

Brain is a comprehensive and dynamic network of ROIs
and may be formulated by various versions of BFCNs
through different definitions of the edges including HON [5],
FuMO [7], sparse network [12], ICA [13], etc. Pearson cor-
relation coefficient (PCC) was the most popular formula-
tion of the ROI edges for its simplicity and effectiveness.
Due to the PCC’s limitation on describing the non-linear
correlation, various other inter-variable similarity metrics
were introduced to define the edges, e.g. Kendall correla-
tion coefficient (KCC) [14, 15], Spearman correlation coeffi-
cient (SCC) [16], and cosine similarity (CS) [17], etc. The
correlation metrics maximal information coefficient (MIC)
has been proven to have outstanding performance in cap-
turing both linear and nonlinear relationships between two
variables [18] and has been successfully applied to connec-
tivity network construction [19] and schizophrenia disease
detection [20].

Considering that brain functional network cannot be mod-
eled simply using one correlation coefficient, integratedmod-
eling of different BFCNs may improve the disease diagnosis
performances. In [10], the correlation’s correlation of mul-
tiple levels of high-order BFCNs were calculated and the
linear fusion of those BFCNs in different levels facilitated
an important improvement in the computational diagnosis
of Autism Spectrum Disorders. Relevant conclusion in [21]
showed that a multi-task intrinsic network fusing within- and
between-task interactions of patients and controls extracted
by general linear model (GLM) and ICA can improve the
schizophrenia diagnosis. However, those works only applied
the traditional tool like PCC and ICA for the base model,
which may be limited.

This study hypothesized that the sensitive correlation met-
rics MIC may capture hidden information from the noisy
brain rs-fMRI data compared to other traditional coefficients,

and the combination of MIC and other coefficients may
improve the diagnosis. Inspired by the above works, we
presented a new data fusion method considering the BFCNs
constructed by various correlation coefficients as data source.
To the best of our knowledge, this is the first work of utilizing
MIC as the correlation metrics in the BFCN construction
for MCI diagnosis and the first work of combining BFCNs
with different correlation measuring metrics. Furthermore,
considering the computational challenge of the large feature
number of a BFCN, we explored the effects of different fea-
ture selection methods on the MCI prediction performance.
Our experimental data demonstrated that the MCI diagnosis
may be improved by integrating multiple correlation metrics
and selecting appropriate features.

II. MATERIALS AND METHODS
A. DATASET SUMMARY
This study used the publicly available neuro-imaging
dataset from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database [22]. ADNI is a longitudinal
multi-center consortium aiming to accumulate and provide
the clinical, imaging, genetics and biochemical datasets for
the early detection and tracking of Alzheimer’s disease
(AD). After a decade’s ongoing effort, the ADNI database
released to the public researchers with the multiple types of
neuro-imaging data and other clinical information. ADNI has
served as a major data source for the researchers of detect-
ing the onset and progression of mild cognitive impairment
(MCI) [23], [24].

This study used the same dataset as in [7], includ-
ing 68 mild cognitive impairment (MCI) patients and
69 Normal Controls (NC) from the ADNI database. The
rs-fMRI of these participants were scanned by 3.0T Philips
MRI scanner. The following scanner settings were uti-
lized: TR/TE = 3000/30 mm, flip angle = 80◦, imaging
matrix size = 64 ∗ 64, 48 slices and 140 volumes, and
slice thickness = 3.3mm. Each rs-fMRI image data was
processed by the following well-accepted protocol using
the software SPM8, which is available at https://www.fil.
ion.ucl.ac.uk/spm/software/spm8/. In order to make a consis-
tent comparison, the samples were selected using the same
criteria as the study [7].

The first three volumes of each participant were discarded
to ensure the magnetization equilibrium. The rest 137 vol-
umes of each participant were then pre-processed with cor-
rection and normalization. The rs-fMRI imaging data was
regressed to reduce the effects of nuisance signals includ-
ing ventricle, white matter signals and six head-motion pro-
files. The Automated Anatomical Labeling (AAL) template
atlas [25] was utilized to divide the generated Blood Oxygen
Level Dependent (BOLD) time series signals into 116 regions
of interest (ROIs). Finally, the mean rs-fMRI time series sig-
nals of each ROI (consisting of 137 volumes) were band-pass
filtered from 0.01 to 0.08 Hz to generate the data matrix of
each participant for constructing BFCN. The pre-processed
data was provided by [7].
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B. CONSTRUCTION OF MuscNet
This study constructed a multi-source connectivity network
(MuscNet) by integrating four classic metrics for measuring
linear correlation coefficients (CC), including PCC, SCC,
KCC and CS, and the sensitive metrics MIC, as illustrated
in Figure 1. PCC was considered as equivalent to the decen-
tralized CS. Both SCC and KCC were non-linear tolerant.

FIGURE 1. Multi-source dynamic BFCN structure. For each correlation
coefficient, we can follow the above structure to construct the
corresponding BFCN and to further integrate the pairwise estimators.

1) STATIC BFCN
The correlation Wcorr

ij between ROIi and ROIj of subject n
was defined as follows:

Wcorr
ij = corr(ROIi,ROIj) (1)

where corr() can be replaced by one specific correlation coef-
ficient metrics. Taking PCC and MIC as examples, respec-
tively. WPCC

ij may calculated as:

WPCC
ij =

∑numROI
m=1 (Vm

i −V̄i)(V
m
j −V̄j)√∑numROI

m=1 (Vm
i −V̄i)

2√∑numROI
m=1 (Vm

j −V̄j)
2

(2)

where Vm
i was defined as the mth element in BOLD time

series signal vector of ROIi of subject n. And WMIC
ij may be

calculated as:

WMIC
ij =

I(Vi,Vj)

min
{
H(Vi),H(Vj)

} (3)

where I(Vi,Vj) was the mutual information between Vi
and Vj, and H(Vi) was the Shannon information entropy
of the variable Vi. The calculation of the MIC and the
Shannon information entropy were implemented as the
function MINE() in the Python package minepy version
1.2.3 [19]. After pre-processing, we can obtain a data matrix
with shape (numsubj,numvolume, numROI), where numsubj =

137, numvolume = 137, numROI = 116, meant that each

subject had 137 volumes, each volume included 116 BOLD
signals corresponding to each ROI. We can also transpose
it into (numsubj, numROI, numvolume), which meant each ROI
had a BOLD signal vector with length numvolume. Then the
basic correlation based BFCN can be constructed as fol-
lows: 1) Calculate pairwise correlation coefficient Wcorr

ij of
all subjects. 2) Concatenate all Wcorr

ij of one subject into
a square matrix with shape (numROI, numROI), which was
called BFCN correlation square. 3) Flatten the BFCN correla-
tion square, and get the BFCN correlation feature vector Fn of
each subject with length (numROI ∗ numROI). Supplementary
Figure S1 illustrated the BFCN correlation matrices based on
PCC and MIC. As for the BFCN correlation matrices based
on other correlation coefficients, corresponding illustration
can be found in Supplementary Figure S2 due to the page
limit.

2) DYNAMIC BFCN
This study extracted the following number of sliding-window
segments from the whole time series signal:

numwindow =

(
numvolume−windowsize

windowstep
+1
)

(4)

where windowsize is the length of each window, and
windowstep is the distance between two successive win-
dows. For example, if windowsize = 50, windowstep = 8,
the 137 volumes may be converted to 11 segments to con-
struct 11 temporal BFCNs. Following the same procedure as
in static BFCN construction, we can produce numwindow tem-
poral BFCN correlation squares. Then the average of these
numwindow temporal correlation squares will be flattened as
the dynamic BFCN correlation feature vector DFn of each
subject. As similar to [7], windowsize was set to (50, 70,
90, 110), while the range of windowstep was (1, 2, 4, 8, 10),
respectively.

3) MUSCNET
Inspired by the previous works [7], [10], [21] using data
fusion to improve the model performance, we constructed
MuscNet by integrating multiple estimators trained by
dynamic BFCNs based on different correlation coefficient
metrics. The whole construction was as follows: 1) Divide
the whole time series signals into several segments by
sliding-window. 2) For each segment, get the correspond-
ing BFCN correlation feature vector Fn of each subject.
3)Train the estimator group by Fns corresponding to vari-
ous correlation coefficients. 4) Fuse the estimator pairwise.
Specifically, the decision scores from each pair of estimators
generated from the above process were linearly fused by a
weighting parameter α, which ranges from 0.1 to 0.9 with
step 0.1. So MuscNet is a weighted voting strategy to
fusing multi-source connectivity networks. For illustration
purposes, each MuscNet may be described with the two
correlation coefficient metrics. For example, ‘‘PCC&MCC’’
represented the MuscNet combining the estimator using PCC
with the estimator using MCC.
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C. FEATURE SELECTION METHODS
This study utilized three popular filter algorithms to select
features for the binary classification problem of MCI and
NC samples. Ttest is the most popular feature selection
algorithm [26] and has demonstrated its effectiveness on the
AD diagnosis [7]. Wilcoxon rank-sum Test (Wtest) [27],
also called Wilcoxon-Mann-Whitney Test, is considered as
an alternative to T-test for its increased robustness [28].
Kolmogorov-Smirnov Test (KStest) is usually employed to
estimate how much two distributions are related to each other
and its promising performance for eliminating redundant fea-
tures has been proved in [29]. Besides, we further discussed
the impact of different filter thresholds for the statistical
Pvalues on classification performance.

D. CLASSIFICATION PERFORMANCE
EVALUATION METRICS
For a fair comparison with the existing studies, we employed
the leave-one-out cross validation (LOOCV) to measure the
classification performances ofMCI andNC samples. To com-
pare the classification performance of different correlation
coefficients combined with different feature selection meth-
ods and different parameters, we set one LOOCV for each
combination. Specifically, each LOOCV trained one model
on (numsubj−1) subjects and predicted the class label of the
rest one sample. Performance of each combination can be
gained after numsubj repeats of LOOCV. To further verify
the performance of the best combination, we adopted the
two-level LOOCV, which is also called nested-LOOCV.

This study evaluated a classification model using three
popular classification performance metrics, i.e., Accuracy
(Acc), Sensitivity (Sn) and Specificity (Sp). The MCI and
NC participants were regarded as positive and negative sam-
ples, respectively. The total numbers of positive and correctly
predicted positive samples were defined as P and TP (true
positive). FN = P - TP was the number of those incorrectly
predicted positive samples. The numbers of correctly and
incorrectly predicted negative samples were TN (true neg-
ative) and FP (false positive), respectively. And there were
N = TN + FP negative samples. The performance metrics
Sn and Sp were defined as the percentages of correctly pre-
dicted positive and negative samples, respectively. That is
to say, Sn = TP/(TP + FN) = TP/P and Sp = TN/(TN +
FP)= TN/N. AndAcc was the overall percentage of correctly
predicted samples, i.e., Acc = (TP + TN)/(P + N).
For each test sample of an LOOCV, we can get a series

of selected feature subsets. Further analysis on these feature
subsets was expected to bring inspiration to the diagnosis
of MCI.

III. RESULTS AND DISCUSSION
A. EVALUATION OF BFCNs USING DIFFERENT
CORRELATION COEFFICIENT METRICS
This study firstly evaluated how different correlation coeffi-
cient metrics impact the binary classification performances

FIGURE 2. Classification performance of BFCNs based on different
parameters. (a) The static BFNCs using different correlation coefficient
metrics. (b) The dynamic BFCNs using different windowsize and
windowstep for different correlation coefficient metrics. The horizontal
axis was in the format of windowsize_windowstep and the vertical axis
was the classification accuracy. Features with Ttest Pvalue < 0.05 was
chosen to calculate the classification performances for both sub-figures.

of the investigated problem, as shown in Figure 2. The
support vector machine with the linear kernel (lSVM) was
used as the classifier for the evaluation [30]. The metrics
MIC achieved the best classification accuracy (Acc) for the
static BFCN-based models, as shown in Figure 2 (a). The
MIC-based static BFCN also achieved a less-biased pair of
Sn and Sp. The two metrics SCC/KCC performed better in
Sn than MIC, but their Sp values were much smaller than
that of MIC. But for the dynamic BFCNs, MIC performed
worse than all the other four correlation coefficient metrics,
as shown in Figure 2 (b). Further detailed comparison in Sn
and Sp can be found in Supplementary Figure S3. The exper-
imental data suggested that there was no single correlation
coefficient metrics performing the best for both static and
dynamic BFCN-based MCI classifications.

B. EVALUATION OF MuscNet
We then evaluated MuscNet models with different corre-
lation coefficient (CC) duets. As shown in Figure 3 and
Supplementary Figure S4, MuscNet significantly outper-
formed dynamic BFCN based on one correlation coefficient
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FIGURE 3. MuscNet classification accuracies based on dynamic BFCNs of
one CC or a CC duet. The parameter ‘‘110_1’’ in the top left corner
represented the two parameters windowsize = 110 and windowstep = 1.
As correlation heatmap, this comparison heatmap was also diagonally
symmetrical. The diagonal represented a dynamic BFCN based on single
correlation coefficient (CC), and the grids represented the integrated
dynamic BFCNs of a CC duet. The heatmap background color was lighter if
the value was larger. Features with Ttest Pvalue < 0.05 were chosen to
calculate the classification performances.

with a maximal accuracy 0.8978. Except for the KCC-based
BFCNs, all the other CC-based BFCNs may be improved
by integrating one more CC metrics. MIC performed the
worst if it was used alone to construct the dynamic BFCN
(Acc = 0.7956) but improved both PCC- and SCC-based
models if the MIC was integrated with one of these two CC
metrics. And MIC didn’t decrease the classification accura-
cies of the other two CC-based models if being integrated
with KCC- and CS-based models. So MIC may be a good
complementary CC metrics to be integrated with the other
CC metrics.

C. EVALUATION OF FEATURE SELECTION ALGORITHMS
Different filter algorithms were evaluated for their improve-
ments on the MuscNet models, as shown in Figure 4. The
above-discussed results were carried out using Ttest as the
feature selection algorithm. Ttest may not always perform
the best on different datasets [31], [32]. So we further eval-
uated the three filter algorithms Wtest, Ttest and KStest.
Features were selected for training the classification model
if their filter-based Pvalues were smaller than 0.05. Firstly,
Ttest didn’t always achieve the best classification perfor-
mances, as shown in Figure 4 (a)-(c). Ttest and Wtest
performed similarly well on the classification accuracies,
and KStest achieved the best performances (Acc = 0.9124,
Sn = 0.8971 and Sp = 0.9275) with two parameters
windowsize = 90 and windowstep = 8 and the integration
of MIC and KCC.

Figure 4 supported the above observation that MIC served
as a good source of complementary information to the
other CC metrics, although MIC didn’t perform well by
itself. The best model with Wtest was integrated from PCC-
and MIC-based dynamic BFCNs using the two parameters
windowsize = 110 and windowstep = 8. The best model
with Ttest was integrated fromPCC- andMIC-based dynamic
BFCNs with windowsize = 50, windowstep = 1 as sliding
window parameters. And the best model with KStest was
integrated from MIC- and KCC-based dynamic BFCNs with
windowsize = 90, windowstep = 8, as shown in Figure 5.

FIGURE 4. Classification accuracy of MuscNet with different feature
selection methods (p-value = 0.05). The notation ‘‘PCC&MIC’’ represented
the MuscNet model integrating the PCC- and MIC-based dynamic BFCNs.
The horizontal axis was the parameter duet windowsize_windowstep. The
vertical axis was the classification accuracy calculated using the features
with the filter Pvalue < 0.05, where the filter algorithm could be
(a) Wtest, (b) Ttest and (c) KStest.

D. PROMOTION BY PARAMETERS TUNING
We further investigated how the filter Pvalue threshold
impacted the model prediction performances. Figure 6 illus-
trated that KStest-selected features with the Pvalue threshold
0.2 achieved the best prediction accuracy 0.9197 by integrat-
ing MIC- and KCC-based dynamic BFCNs. Results of each
sliding window parameter combination can be found in Sup-
plementary Figure S5. A similar pattern was also observed
that MIC-based BFCN improved all the four other CC-based
dynamic BFCNs.

Figure 7 suggested that Ttest didn’t perform well on
the dataset and the Ttest-based dynamic BFCN model only
achieved Acc = 0.8978, as shown in Figure 8 (b). Wtest
achieved a better overall accuracy 0.9051 by integrating
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FIGURE 5. Best performance comparison among Wtest, Ttest and KStest
(Pvalue < 0.05). The horizontal axis was the three classification
performance metrics, Acc, Sn and Sp. The horizontal axis was the three
classification performance metrics of different filter algorithms,
respectively. The vertical axis was the corresponding values of each
metric.

FIGURE 6. The classification accuracy heatmap. This heatmap showed the
comparison between dynamic BFCNs based on one CC and integrated CC
duets. Features with the KStest (Pvalue < 0.2) were selected for training
the model. And the two parameters windowsize = 110, windowstep = 10
were set for the sliding windows. The heatmap background color was
lighter if the value was larger.

the MIC- and SCC-based dynamic BFCNs. And the KStest
achieved an even better accuracy 0.9197 for two models
MIC&SCC and MIC&KCC. Verification results of this best
model using the two-level LOOCV also get the accuracy
0.9197, suggesting that the set of the best parameters is also
effective on the cross validation strategy.

TABLE 1. Comparison on MCI prediction performances with the existing
studies. The performance metrics were accuracy (Acc), sensitivity (Sn) and
specificity (Sp). The models HON, LoM, HiO, and FuMO were from the
existing studies. And the MuscNet model was proposed in this study.

E. COMPARISON BETWEEN MuscNet AND
THE EXISTING STUDIES
The MuscNet models were compared with the existing
studies on the predicting performances of MCI patients,
as shown in Table 1. To be specific, for HON method,

FIGURE 7. Classification accuracies of MuscNet models with different
Pvalue thresholds. The horizontal axis was the filter Pvalue thresholds
and the vertical axis was the classification accuracies. The evaluation was
carried out for (a) Wtest, (b) Ttest and (c) KStest.

windowsize = 110, windowstep = 1; for LoM, HiO and
FuMO methods, windowsize = 50, windowstep = 8.

It is demonstrated in [5] that the high-order brain func-
tional connectivity network (HON) performed effectively on
detecting the MCI patients. Due to the variations in the sam-
ples used in each study, validation work in [7] demonstrated
that the HON model achieved the accuracy 0.8207 on their
dataset, as shown in Table 1. They proposed low-order model
(LoM), high-order model (HiO) and the integrated fusion of
both models (FuMO) to further improve the HON model,
as shown in Table 1. The experimental data suggested that
LoM achieved the best accuracy 0.9051 in their study.

The MuscNet model outperformed all these four models in
the prediction performance metrics Acc and Sn, and achieved
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FIGURE 8. Comparison between top-10 features most frequently selected
by MIC and KCC models. Column in red represents the top-10 features
selected by one model, column in blue represents this feature also
belongs to the top-10 features selected by the other model, and column
in green represents this feature doesn’t belong to the top-10 features
selected by the other model. The vertical axis of each figure was the
selected frequency of one feature.

the same specificity (Sp = 0.9130) as the fusion model
FuMO.

F. BRAIN ROIs ASSOCIATED WITH THE MCI PREDICTION
As mentioned above, the best model in this study was the
MIC&KCC model with windowsize = 110, windowstep = 10
and KStest Pvalue threshold 0.2. The top-10 most frequently
selected ROIs of the best model were collected and analyzed
for their known associations with MCI, as shown in Figure 8.
A set of ROIs was selected during each iteration of the
LOOCV, and the ROIs were ranked by their frequencies of
being selected by these iterations. We can see from Figure 8
that the two model had more than half features in common,
which means that the two models have a certain similarity in
the description of the correlation, and they can both capture
the core characteristics of rs-fMRI data. As for the difference
set, all top-10 features selected by MIC also had a high
selected frequency in the KCC model, not vice-versa.

Seven brain ROIs were frequently selected by both MIC
and KCC models. Cerebellum was a biomarker ROI that
contributed to the best MCI prediction accuracy, and it has

already been observed to be involved in the development of
both MCI and AD [33], [34]. Insula was a crucial structure
for high-level cognition and was also observed in close asso-
ciations with various neurodegenerative diseases [35], [36].
Other ROIs like lingual gyrus [37] and postcentral cingulate
cortex [38] demonstrated to have reduced metabolism levels
and were observed in the MCI or AD patients.

The previous study suggested the existence of multiple
solutions with the similarly good performance for a machine
learning problem [39], [40]. Difference correlation coeffi-
cients evaluated the MCI prediction problem from different
perspectives. These correlation coefficients may generate
different sets of features for the prediction models. And
MuscNet achieved slightly better performance using different
features than the other models, as shown in Table 1.

IV. CONCLUSION
This study proposed the weighted voting-based fusion of a
multi-source connectivity network (MuscNet) by integrating
dynamic BFCNs using different correlation coefficients. This
idea was inspired by the observation that the integration of
low-order and high-order BFCN generated satisfying disease
prediction performances.

Our experimental data demonstrated that the CC met-
rics MIC served as a complementary information source.
Although MIC-based dynamic BFCN didn’t perform well,
the integration of the MIC-based dynamic BFCN with other
models usually improved these models. The proposed Musc-
Net model also improved the existing studies in predicting
MCI. The statistical KStest performed the best on select-
ing features and the best model was the MIC&KCC-based
dynamic BFCN.
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